THERMAL CONDUCTIVITY OF GLASS-FIBER SYSTEMS

S.P. Vnukov, V. A, Ryabov, UDC 536.21
and D,V. Fedoseev

Heat transfer in glass~fiber materials is considered. The effect of scattering on heat trans-
fer is investigated, and the results of calculations are compared with published data.

According to the terminology developed in [1, 2], fiber systems are dispersed media with communi-
cating pores. Dul'nev et al. {2, 3] have proposed a model with long-range order in the form of mutually
penetrating rods to describe such systems with randomly distributed fibers {cotton wool, felt, and so on}.
The following expression for the effective thermal conductivity is obtained:
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The parameter c is the solution of the equation
p=2c—3¢c -1,

where p is the porosity of the system [p = Vz/(Vi + Vy)]. It is shown in [4] that this model accounts quite
satisfactorily for the measured effective thermal conductivity of dispersed systems in a broad range of
values of p.

The particular feature of glass-fiber systems used in industry is their high porosity (0.80-0,99) and
elongation (ratio of fiber length to diameter in excess of 1000). Such systems can be described by a sim-
pler model than that considered above.

Suppose that a unit volume contains n fibers of unit length and radius r, and let 7 and (1 — 7) be the
fraction of fibers elongated at right-angles to and in the direction of the heat flow, respectively.

Let us suppose that T, fibers and the gas filler in a unit volume constitute the thermal resistances
R'1 and R, connected in series, while (1 — T)n fibers form the resistance Ry" connected in parallel to them.
We then have

, { " 1 l
Ri=——, Ri= , Ry= 32— (2)
TS, T ST T s,

In this expression Sy = mr2n(1 ~ T) is the cross-sectional area of all the fibers which are parallel to the
heat flow; S, =1 — 7rin(l — T) is the total area corresponding to the gas filler and the fibers which lie at
right-angles to the heat flow; ; = Tmr?n/S,, I, = V,/S, are the equivalent dimensions corresponding to the
Tn fibers and the gas filler in unit volume, respectively.

The total thermal resistance per unit volume of the system R ¢ = 1 /Aegt is given by
1 1 1 (3)

= e e,
Ry R Ri+R,
Substituting for R;', Ry", and R, from Eq. (2) into Eq.(3), and using the formula for the porosity per unit

volume
p=1-—aqrn, 4
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we have (for conductive heat transfer)

heff=h, {(1'—17) (I—1) + [I—{—p (I—7p }\ 5
T(l—~p)+£ J
¥

When the fiber directions are uniformly distributed [a similar assumption is adopted in the deriva-
tion of Eq.(1)], i.e., when T = 2/3, we have

}veff: ;q I:l"“p 7;_ (2’{" p)zg } . (5')
6(1—p) + "VE

In Fig 1 values of Agff/A calculated from Dul'nev's formula (1) and from Eq.(5'), for different p and
Y, are compared. It is clear from Fig.1 that the two sets of calculated values of Aeff/ A are practically
the same for p > 0.80, For p > 0.80 and ¥ < 0,07 (for example, for glass wool in air under normal con-
ditions ¥ = 0,027) we can simplify Eq.(5') as follows:

heff= 1, [1:3ﬁ + Q_g'?"i)z_vj _ (6)

The difference between Eqs.(5') and (6) is then not more than 1%.

In addition to conductive heat transfer through the fibrous system, we can also have convective, radi~
ative, and contact transfer. It follows from [1, 5, 6] that in the glass-fiber systems which we are consid-
ering we can neglect convective and contact heat transfers. Radiative heat transfer canbetakenintoaccount
through the simultaneous solution oftwo integrodifferential equations, one of which describes the radiative heat
transfer and the other the conservation of energy. The solution of this set of equations is mathematically very
difficult, and inthe published material there are only numerical or very unwieldy solutions. The problem is sub-
stantially simplified by using the differential-difference approximation of Schuster and Schwarzschild. For
a purely scattering medium the solution of the differential-difference equation yields the following expres-
sion for the radiation flux through a plane-parallel layer (see, for example, [7]):

_(BO—E@)

e e+ Pyl @
0

In this expression 8 =kdmn is the scattering coefficient of the medium; and it is assumed that the radia-
tion is attenuated by the fibers which lie in planes parallel to the bounding surfaces; € = (1/€;) + (1/€&;) — 1.

1t is shown in [8] that when the radiation is incident at right-angles to the axis of an infinitely long
cylinder, the scattering coefficient of the cylinder is very close to that for a sphere {for refractive in-
dices m < 2.5):

k=2 — 4p L sinp - 4p™2 (1— cosp), (8)

where p = 2ad(m — 1)/ A,

If Ep (T) takes the form of Planck's law, and we use Eqgs.(4) and (8), we can rewrite Eq.(7) in the
form
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In this expression C; = 0,374°10"* W.m? C, =0.0144 m -deg. To obtain an analytic expression for the
integrals in Eq.(9), we replace k by the approximate formula

2p?

k= . 10
14-p? (9
Assuming that the refractive index of the glass fibers is constant and equal to 1.5 (which is fully

justified provided the temperatures are not too high), and evaluating the integral in Eq. (9) with k given by
Eq. (10), we obtain
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where A% =1 + (87 (1 — p)L)/7d&; D = 72dA/Cy; ¥ is the Euler function. In obtaining this solution we made
use of the results given in [9].

Numerical estimates show that the term in the square brackets in Eq.(11) can be neglected in com-
parison with the first two terms, so that we have

g =a[(Tt =T + b(T} —TY], (12)
where :
e A el
+ T Téd3 (8 -+ T)

o =5.67-10"8 W/m? - deg? is the Stefan— Boltzmann constant.

Table 1 gives the measured [10] and calculated [from Eq.(12)] heat fluxes in vacuo between surfaces
attemperatures of 300 and 77 K separated by glass-fiber insulation. It was assumed that T =1 since SBR-M
glass paper and EVTI-15 glass cloth contain fibers which lay mainly at right-angles to the direction of the
heat flux.

In layered thermal insulation in vacuum the fraction of radiative flux is shown by Eq.(12) to be higher
by 10-30% than the values reported in [10, 11, 12] and based on the usual formula, which does not take
into account attenuation of radiation by scattering. The remaining results and conclusions (the explana-
tion of the "thermal paradox" and the dependence of thermal conduction on the thickness of the layered in-
sulation in vacuo due to the residual gases) are as before, At higher temperatures the discrepancy be-
tween calculations based on Eq. (2) and the experimental data is greater (cf, [13]). It is clear that a more
accurate analysis of radiative transfer is required in this case,

Equation (12) can be used to define in the usual way the radiative heat-transfer coefficient:

Gr.= by (T —To)IL. (13)

When 87(1 — p)L/7d > £ we have
hr = _STI:(:Tip) [(T2+T2) (T, -+ Ty d + 5C2 (T, + Ty ] ~ (14)

For small temperature gradients
A = "87(?.6-,0) <4T3d + 5 T\ . (15)

Figure 2 shows experimental data [6] with values of A, in vacuum and the values obtained from Eqgs.
(14), (15), and (9). The integral in Eq.(9) is evaluated by Simpson's rule., It is clear from Fig, 2a that
Eq.(9) is satisfactorily approximated by either Eq, (12) or Egs.(14) and (15). Weused T = 2/3 in the cal-
culations. Inthe worst case, calculation and experiment differ by a factor of 2-2,5, On the other hand,
the discrepancy in the case of the formulas proposed in [3, 6] is an order of magnitude,
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Fig.2. The quantity Ay, mW/m -deg, for glass wool in vacuum: a) as a func~
tion of glass~fiber diameter d, K; mean temperature 297°K; 1) experiment
[6]; 2) Eq.(15); 3) Eq.(9); b) as a function of the density v, kg/m3; d=115 4
surface temperatures 293 and 90°K; 1) experiment [6]; 2) Eq.(14).

Fig.3. Dependence of A, W/m -deg, for glass wool in air on the porosity p
and density ¥, kg/m? (mean temperature 303°K); 1) experiment [14-16], d = 5
i 2) experiment {14, 15], d = 35 4 3) experiment [15], d = 104 K; 4-6) cal-
culation based on Eq. (17) with d = 5.35 and 104 §, respectively.

TABLE 1. Heat Fluxes in Vacuo be- Equation (14) can be used to determine the optimum glass-
tween Surfaces at Temperatures of fiber diameter, i.e., the diameter for which Ay is 2 minimum .
300 and 77K Differentiating Eq. (14) with respect to d and equating to zero,
2 T w/m? we obtain
Insulator 4 W/m | % =

expt. [10] | Eq. (12) i V'5¢C, (16)
SBR-M glass paper 4,44 ‘ 4,3 2tV 12 4 12
EVTI -15161355 cloth 10,4 8,4

It is clear fromthis expressionthat for thermal insulationin
vacuo with reduced boundary temperatures it is more convenient to
use thicker glass fibers (which are also less expensive).

The resultant heat-transfer coefficient for the glass—~fiber system is
Ay = A'eff+ Ap. (n
where Aqgr is determined by Eq.(5) or Eq.(5') and Ay by Eq.(14), (15), or (9).

That the resultant heat-transfer coefficient can be written as the sum of conductive and radiative
components is a consequence of the Schuster—Schwarzschild approximation.

The experimental data in [14-16] and those calculated from Eq.(17) are given in Fig.3. The ther~
mal conductivity of glass fibers is taken from the experimental data of L.,S. Eigenson, S.A. Serdobol'~
skaya et al, (Scientific-Research Institute for Glass, Moscow), who determined the thermal conductivity of
glass with a composition close to that of the glass fiber. The shaded regions in Fig,3 correspond to the
thermal conductivity of glass fiber for A{ = 0.95-1.05 W/m -deg. The contribution of the radiative compo-
nent Ay to the resultant heat-transfer coefficient of glass wool for fibers with d = 5 ¢4 is 0,5-3.0% in the
above porosity range and 2.0-7.5% and 14% for d = 35 4 and d = 104 K, respectively.

Estimates of the convective component for glass-fiber insulation using the formulas given in [1]
under normal industrial conditions (temperature drop 50°K, thickness 0.05 m) show that convection ap-
pears when d > 150-300 £ for a porosity p = 0,96-0.92.

It is clear from the foregoing that the contribution of the radiative component to the thermal
conductivity of glass-fiber systems is quite small. Since the cost of glass-fiber components with
fiber diameters of 35 4 is several times the cost in the case of diameters of 100 K, it is better to
use components made of glass fibers of diameter 100 4 as a heat-insulating material especially in
housing and industrial buildings. When p = 0.92, one can obviously use glass fibers with diameters
up to 300 ¢ for these purposes. It is shown in [17, 18] that constructional materials consisting of
elastic (35-100 #) and thick (100-300 K) fibers are stronger and have a longer life that components
consisting of fine (3-12 ¥) and coarse (12-30 1) glass fibers. The sound insulating properties remain
roughly the same as for fine and coarse glass fibers.
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NOTATION

Ao is the thermal conductivity of fiber system;
Aoff, Ar are the conduction and radiation thermal conductivity;
A Ay are the fiber and gas-filler thermal conductivity;
Vi, Vy are the volumes of fibers and gas-filler using unit volume of system;
n is the number of fibers per unit volume;
r, d are the radius and diameter of glass fiber;
R is the thermal resistance;
S is the area;
l is the length; _
E)\(Ty), Ep(Ty) - are the spectral intensities of thermal radiation density for boundary surfaces;
Ty, Ty are the boundary surface temperatures;
gy, & are the emissivities of boundary surfaces;
L is the distance between boundary surfaces;
k is the dissipation factor of medium particles;
A is the wavelength;
m is the refraction index;
Y is the density.
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