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Heat t ransfer  in g lass- f iber  mater ia ls  is considered.  The effect of scat ter ing on heat t r ans -  
fer is investigated, and the resul ts  of calculations a re  compared with published data. 

According to the terminology developed in [1, 2], fiber sys tems are  dispersed media with communi-  
cating pores. Dul'nev et al. [2, 3] have proposed a model with long-range order  in the form of mutually 
penetrating rods  to descr ibe  such sys tems  with randomly distributed fibers (cotton wool, felt, and so on). 
The following expression for the effective thermal  conductivity is obtained: 

2re(l--  c) ] ~'2 (1) 
~eff = ~1 c'- + v (1-c)~ + ~-~-(5~-~)j ' v = - - .  

The pa ramete r  c is the solution of the equation 

P = 2c ~ - 3 c  2 + 1, 

where p is the poros i ty  of the sys tem [p = Vz/(V 1 + V2) ]. It is shown in [4] that this model accounts quite 
sa t isfactor i ly  for the measured  effective thermal  conductivity of d ispersed sys tems in a broad range of 
values of p. 

The par t icular  feature of g lass- f iber  sys tems  used in industry is their high porosi ty  (0.80-0.99) and 
elongation (ratio of fiber length to diameter  in excess of 1000). Such sys tems can be descr ibed by a s im-  
pler  model than that considered above. 

Suppose that a unit volume contains n f ibers  of unit length and radius r, and let ~ and (1 - ~-) be the 
fract ion of f ibers elongated at r ight-angles  to and in the direction of the heat flow, respect ively .  

Let us suppose that 7 n f ibers  and the gas fil ler in a unit volume constitute the thermal  res i s tances  
R~ and R 2 connected in s e r i e s ,  while (1 - ~')n f ibers form the res i s tance  Hi" connected in parallel  to them. 
We then have 

R',= q - ,  ~ ' ; = ~ ,  ~ = -  ~ (2) 
~aS2 ~,lSx ~,2S~ 

In this express ion S i = ~r2n(1 - 7) is the c ross - sec t iona l  a rea  of all the f ibers which are  paral lel  to the 
heat flow; S 2 = 1 - ~rr2n(1 - ~') is the total a rea  corresponding to the gas filler and the f ibers which lie at 
r ight-angles  to the heat flow; 1 i = l"Trr2n/S2, l 2 = V2/S 2 are  the equivalent dimensions corresponding to the 
~'n f ibers  and the gas filler in unit volume, respect ively .  

The total thermal  res i s tance  per unit volume of the sys tem Ref f = 1 /~eff  is given by 

1 1 1 

Ref f RI RI -}- R2 

Substituting for RI ' ,  
volume 

(3) 

R1 ~, and R 2 f rom Eq. (2) into Eq. (3), and using the formula for the porosi ty  per  unit 

p = 1 - -  ~r~tt, (4) 
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F ig .  1. h e f f / k  1 for  a s y s t e m  with 
c o m m u n i c a t i n g  p o r e s  as  a funct ion 
of p and 9: 1) a c c o r d i n g  to Eq. (1); 
2) a c c o r d i n g  to Eq. (5 ') .  

we have  (for conduct ive  hea t  t r a n s f e r )  

~'eff=- ~-1 {( 1--- p) (1 - -  no) -x- [ 1 - - ( l - - p )  (1--1:)] 2 t 

~ ( l _ f ) +  A ~ 
(5) 

When the f ibe r  d i r e c t i o n s  a r e  u n i f o r m l y  d i s t r i b u t e d  [a s i m i l a r  a s s u m p t i o n  is  adop ted  in the d e r i v a -  
t ion of Eq.(1)] ,  i . e . ,  when r = 2/3,  we have  

~.eff=Rl [ I ~ P  }_ (2-J-P)  "~ J (5') 
6 (1 - -p )  + 9p " 

'V 

In  F ig  i v a l u e s  of Xeff /h  1 ca l cu la t ed  f r o m  D u l ' n e v ' s  f o r m u l a  (1) and f r o m  Eq.  (5'), for  d i f fe ren t  p and 
u, a r e  c o m p a r e d .  It  i s  c l e a r  f r o m  Fig .  1 that  the  two se t s  of e a l eu Ia t ed  v a l u e s  of Neff /h  t a r e  p r a c t i c a l l y  
the  s a m e  for  p > 0.80.  For  p > 0.80 and u < 0.07 (for e x a m p l e ,  for  g l a s s  wool in a i r  under  n o r m a l  con -  
di t ions  u = 0.027) we ean  s i m p l i f y  Eq.  (5') a s  fol lows:  

~ e f f = ~ l [ ~ - ~ + ( 2 + P ) 2 v ]  ' 9 p  (6) 

T h e  d i f f e rence  b e t w e e n  Eqs .  (5') and (6) is  then  not m o r e  than  1%. 

In addi t ion  to conduc t ive  heat  t r a n s f e r  th rough  the  f i b rous  s y s t e m ,  we can  a l so  have  convec t ive ,  r a d i -  
a t ive ,  and  con tac t  t r a n s f e r .  It  fo l lows f r o m  [1, 5, 6] that  in the g l a s s - f i b e r  s y s t e m s  which we a r e  e o n s i d -  
e r i n g w e  can  neg lee t  convec t ive  and contac t  heat  t r a n s f e r s .  R a d i a t i v e  heat  t r a n s f e r  c a n b e  t aken  into account  
th rough  the s i m u l t a n e o u s  so lu t ion  of two in tegr  odi f fer  ent ia l  equa t ions ,  one of which  d e s c r i b e s  the r a d i a t i v e  heat  
t r a n s f e r  a n d t h e  o ther  the c o n s e r v a t i o n  of e n e r g y .  The  solut ion  of th is  se t  of equat ions  is m a t h e m a t i e a l l y v e r y  
diff icul t ,  and in the  pubI i shed  m a t e r  ial t h e r e  a r e  only  n u m e r i c a l  or  v e r y  unwieIdy so lu t ions .  The  p r o b l e m  is s u b -  
s t an t i a l l y  s i m p l i f i e d  by  us ing  the d i f f e r e n t i a l - d i f f e r e n c e  a p p r o x i m a t i o n  of Schus t e r  and S c h w a r z s c h i l d .  Fo r  
a p u r e l y  s c a t t e r i n g  m e d i u m  the  so lu t ion  of the  d i f f e r e n t i a l - d i f f e r e n c e  equat ion  y i e lds  the fol lowing e x p r e s -  
s ion fo r  the r a d i a t i o n  flux th rough  a p l a n e - p a r a l l e l  l a y e r  (see,  for  example ,  [7]): 

oo 

i Zz, (T1) - -  E~. (T2) d~,. (7) 
qr = �9 e-t- ~ L  

0 

In th is  e x p r e s s i o n  fin = kdTn is  the s c a t t e r i n g  coef f ic ien t  of the med ium;  and it i s  a s s u m e d  that  the r a d i a -  
t ion is  a t t enua ted  by  the f i b e r s  which  l ie  in p l a n e s  p a r a l l e l  to the  bounding s u r f a c e s ;  e = (1 /e  i) + (1 / e  2) - 1. 

It i s  shown in [8] that  when the r a d i a t i o n  is  inc ident  a t  r i g h t - a n g l e s  to the  ax i s  of an inf in i te ly  long 
cy l inde r ,  the s c a t t e r i n g  coef f ic ien t  of the cy l inde r  i s  v e r y  c lo se  to that  fo r  a s p h e r e  (for r e f r a c t i v e  i n -  
d i ce s  m < 2.5): 

k ::  2 - -  4p -1 sin ,~~ -I- 4p -2 ( 1-- cos p), (8) 

w h e r e  P = 2~rd (m-  1)/ik,  

If Eh (T  ) t a k e s  the f o r m  of P l a n c k ' s  law, and we use  Eqs .  (4) and (8), we can  r e w r i t e  Eq. (7) in the 
f o r m  
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(9) 
qr = 0 e -}- 4x (1--~d p) L [2__4p_ 1 sin p + 4p -~ (1-- cos p)] 

In this expression C 1 = 0 .374.10 -15 w . m  2, C 2 = 0.0144 m .deg.  To obtain an analyt ic  express ion  for the 
in tegra l s  in Eq. (9), we rep lace  k by the approx imate  fo rmula  

k =  2~ 
1+ p2" (10) 

Assuming that the r e f r ac t ive  index of the g lass  f ibe r s  is constant and equal to 1.5 (which is fully 
just i f ied provided the t e m p e r a t u r e s  a re  not too high), and evaluating the in tegral  in Eq. (9) with k given by 
Eq. (10), we obtain 

_ C1 { D (A 2 - -  1) D (T~-- T~) 
qr (rid) ' eA 6 ]-~ (r{ - -  T~) + 6 

-~ l =  A---~-22 [ln ( ~ )  D(T~--T2)-~-W ((2DTO-1t--T((2DT~)-~)]},, (11) 

where  A 2 = 1 + (8~-(1-  p)L)/~rde; D = 7r2dA/C2; �9 is  the Euler  function. In obtaining this solution we made 
use  of the r e su l t s  given in [9]. 

Numer iea l  e s t i m a t e s  show that the t e r m  in the square  b racke t s  in Eq. (11) can be neglected in c o m -  
pa r i son  with the f i r s t  two t e rm s ,  so that we have 

where  

qr = a [(T~ - -  T~) + b (T~ - -  T~)] , (12) 

20C~ �9 (1-- p) L 

a =  e +  8~(1--p)L;~td b=~d 3(e~, 8~(1--p)L) 
a = 5.67 �9 10 -8 W / m  2 �9 deg 4 is  the S t e f an -B o l t zmann  constant .  

Table  1 gives the m eas u red  [10] and calculated [from Eq. (12)] heat f luxes in vacuo between su r faces  
a t t e m p e r a t u r e s  of 300 and 77'K sepa ra t edby  g l a s s - f i be r  insulation. It was a s sumed  that 1- = I s ince SBR-M 
glass  paper  and EVTI-15 g lass  cloth contain f ibe r s  which lay mainly at r igh t -ang les  to the d i rec t ion of the 
heat flux. 

In l aye red  t he rm a l  insulat ion in vacuum the f rac t ion  of rad ia t ive  flux is shown by Eq. (12) to be higher 
by 10-30% than the values  r epor t ed  in [10, 11, 12] and based  on the usual formula ,  which does not take 
into account at tenuation of radia t ion by sca t te r ing .  The remain ing  r e su l t s  and conclusions (the explana-  
tion of the " t h e r m a l  paradox"  and the dependence of t he rma l  conduction on the th ickness  of the l aye red  in-  
sulation in vacuo due to the res idual  gases)  a r e  as  be fore .  At higher t e m p e r a t u r e s  the d i sc repancy  b e -  
tween calculat ions based  on Eq. (2) and the exper imenta l  data is  g r ea t e r  (cf. [13]). It is c l ea r  that a m o r e  
accurate analysis of radiative transfer is required in this case. 

Equation (12) can be used to define in the usual way the radiative heat-transfer coefficient: 

When 87(1 - p)L/~rd >> ~ we have 

8T(1--p) 

qr.= ~r (T1 - -  T2)/L" (13) 

I(T~+T~)(T 1-~-T~.)d+ 5C~ (T 1 ~ T2 ) ] .  
}~-d 

(14) 

a(~ (4Tad_~ 5C~ T) (15) 
)~r ST (1-- p) . ~-~ , ' 

For small temperature gradients 

Figure  2 shows exper imenta l  data [6] with values  of k r in vacuum and the values  obtained f r o m  Eqs. 
(14), (15), and (9). The integral  in Eq. (9) is  evaluated by S impson ' s  ru le .  It is c l ea r  f r o m  Fig .2a  that 
Eq. (9) is sa t i s fac to r i ly  approx imated  by ei ther  Eq. (12) or Eqs.  (14) and (15). We used ~" = 2/3 in the ca l -  
culat ions.  In the wors t  case ,  calculat ion and exper iment  differ  by a fac tor  of 2-2.5.  On the other band, 
the d i sc repancy  in the case  of the fo rmulas  p roposed  in [3, 6] is an o rder  of magnitude.  
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Fig. 2. The quantity ~r, m W / m .  deg, for glass  wool in vacuum: a) as  a func- 
tion of g lass - f iber  diameter  d, tt; mean t empera tu re  297~ ;  1) experiment 
[6]; 2) Eq. (15); 3) Eq. (9); b) as  a function of the density Y, kg/m3; d = 1.15 
surface t empera tu res  293 and 90~K; 1) experiment [6]; 2) Eq. (14). 

Fig. 3. Dependence of ks, W/m �9 deg, for  glass  wool in a i r  on the poros i ty  p 
and density 7, k g / m  3 (mean tempera tu re  303~ 1) experiment [14-16], d = 5 
#; 2) experiment [14, 15], d = 35 ~; 3) experiment [15], d = 104 #; 4-6) ca l -  
culation based on Eq. (17) with d = 5.35 and 104 #, respect ively .  

TABLE 1. Heat Fluxes in Vacuo be-  
tween Surfaces at Tempera tu res  of 
300 and 77~K 

qr, W/mS qr' W/m~ 
Insulator expt. [10] Eq. (12) 

4,3 
8,4 

SBR=M glass paper 4,44 
EVT1-151Glass cloth 10,4 

Equation (14) can b~ used to determine the optimum g l a s s -  
fiber diameter,  i . e . ,  the diameter  for which ~r is a min imum.  
Differentiating Eq. (14) with respec t  to d and equating to zero, 
we obtain 

d = V 5  c~ (16) 

It is c lear  f romth i s  express ionthat  for thermal  insulation in 
vacuo with reduced boundary tempera tures  it is more  convenient to 
use thicker glass  f ibers (which a re  also less  expensive). 

The resultant heat-transfer coefficient for the glass-fiber system is 

;'s = )~eff"~ ~r' 

where ~eff is determined by Eq. (5) or Eq. (5)) and 2, r by Eq, (14), (15), or (9). 

(17) 

That the resultant  hea t - t r ans fe r  coefficient can be writ ten as the sum of conductive and radiat ive 
components is a consequence of the Schus t e r -Schwarzsch i ld  approximation.  

The experimental  data in [14-16] and those calculated f rom Eq. (17) a re  given in F ig .3 .  The the r -  
mal conductivity of glass  f ibers  is taken f rom the experimental  data of L.S.  Eigenson, S.A. Serdobol ' -  
skaya et al. (Scient i f ic-Research Institute for Glass,  Moscow), who determined the thermal  conductivity of 
glass  with a composit ion close to that of the glass  f iber .  The shaded regions  in Fig.3 cor respond to the 
thermal  conductivity of glass  fiber for }h = 0.95-1.05 W/m .deg.  The contribution of the radiat ive compo-  
nent Xr to the resul tant  hea t - t r ans fe r  coefficient of glass wool for f ibers  with d = 5 ~ is 0.5-3.0% in the 
above poros i ty  range and 2.0-7.5% and 14% for d = 35 # and d = 104 #, respect ive ly .  

Es t imates  of the convective component for g lass - f iber  insulation using the formulas  given in [1] 
under normal  industrial  conditions ( temperature  drop 50'K, thickness 0.05 m) show that convection ap-  
pears  when d > 150-300 g for a poros i ty  p = 0.96-0.92. 

It is c lear  f rom the foregoing that the contribution of the radiat ive component to the thermal  
conductivity of g lass - f iber  sys tems  is quite small .  Since the cost  of g lass - f iber  components with 
fiber d iameters  of 35 t~ is several  t imes the cost  in the case of d iameters  of 100 #, it is better to 
use components made of glass  f ibers  of diameter  100 # as a heat-insulating mater ia l  especial ly in 
housing and industrial  buildings. When p = 0.92, one can obviously use glass f ibers with d iameters  
up to 390 ~ for these purposes .  It is shown in [17, 18] that constructional  mater ia ls  consisting of 
elastic (35-100 #) and thick (100-300 ~) f ibers a re  s t ronger  and have a longer life that components 
consist ing of fine (3-12 /t) and coarse  (12-30 P) g lass  f ibers .  The sound insulating proper t ies  remain  
roughly the same as for fine and coarse  glass  f ibers .  
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N O T A T I O N  

is the thermal conductivity of fiber system; 
are the conduction and radiation thermal conductivity; 
are the fiber and gas-filler thermal conductivity; 
are the volumes of fibers and gas-filler using unit volume of system; 
is the number of fibers per unit volume; 
are the radius and diameter of glass fiber; 
is the thermal resistance; 
is the area; 
is the length; 
are the spectral intensities of thermal radiation density for boundary surfaces; 
are the boundary surface temperatures; 
are the emissivities of boundary surfaces; 
is the distance between boundary surfaces; 
is the dissipation factor of medium particles; 
is the wavelength; 
is the refraction index; 
is the density. 
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